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ABSTRACT:

We use an Evans-Gillan driving force F4q, together with isokinetic and
isoenergetic constraint forces F., to drive steady heat currents in
periodic systems of 4 and 32 hard spheres. The additional driving and
constraint forces produce curved trajectories as well as additional
streaming and collisional contributions to the momentum and energy fluxes.
Here we develop an analytic treatment of the collisions approximately 10
times faster than our previous numerical treatment. At low field strengths
A, for Ao less than 0.4, where o is is the hard-sphere diameter, the
32-sphere conductivity is consistent with Alder, Gass and Wainwright's
108-sphere value. At higher field strengths the conductivity varies roughly
as 11/2, in parallel to the logarithmic dependence found previously for

3 hard disks.
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I. INTRODUCTION

Boltzmann formulated the atomistic basis for nonequilbirium flows of mass,
momentum, and energy, described by the linear laws of Fick, Newton, and
Fourier [1]. A general method for expressing the corresponding transport
coefficients, the diffusion, viscosity, and heat conductivity, in terms of
equilibrium current, stress, and heat current autocorrelation time integrals
was developed by Green and Kubo. Alder and Wainwright applied this l1inear

response formalism to the simplest prototypical atomic model, hard spheres,

during the period from 1955 to 1970 [2,3].

A major accomplishment of the computational effort during this period was
establishing the form of equilibrium equation of state, characterizing the
number-dependence of the pressure [2,4] and establishing the location of the
fluid-solid phase transition [5]. This work led to a fairly reliable method
for calculating fluid-phase equilibrium properties by perturbation theory
based on the hard-sphere results [6]. Nonequilibrium progress has been more
difficult, primarily due to the lack of a useful perturbation theory. The
Green-Kubo method provided a route to the 1inear transport coefficients
using equilibrium molecular dynamics. Because the calculations were
time-consuming, being based on the analysis of fluctuations, and showed

considerable number dependence, there was motivation to develop alternative

approaches [7,8].



New methods began to be developed for treating nonlinear transport, using
driving forces and constraint forces to produce fluxes under steady-state,
far-from-equilibrium conditions. By 1982 Evans and Gillan had shown that
heat flow, the transport property studied here, could be induced by using a
driving force depending on individual particle contributions to the energy
and pressure tensor [9,10]. Their idea has been applied to both soft
{11,12] and hard [13] spheres. Heat flow requires a system of three or more
particles and is intrinsically more complex than diffusive or viscous flows,
for which two particles suffice [14]. Here we apply the Evans-Gillan idea

to hard spheres.

The present work is organized as follows. In Section II we give a brief
resume of the Evans-Gillan recipe for the determination of the heat
conductivity. 1In Section I1I we describe an analytic method which makes the
collisional calculation more efficient than the purely numerical approach
followed previously [13], particularly for dense fluids and for solids.
Conductivity results based on this analytic approach are 1isted in Section

IV. Section V is a discussion.

II. BASIC EQUATIONS

In the interest of generality and clarity, we first consider a continuous
pairwise-additive interaction potential ¢(r). We consider later the
hard-sphere 1imit. The periodic system, which can be fluid or solid, with

volume V, contains N D-dimensfional particles of mass m. The total momentum



of the system is zero. Particle i, located at ry has momentum Py- The

total energy E is a sum of kinetic and potential contributions K and &:
E=K+&=73 pf/Z(m) + T T oy5(ryy) s (1)

The single sum runs over all N particles. The double sum includes all pairs
of particles. Three types of forces act on each particle: An applied force
Fa from the potential gradient, an external driving force Fd inducing,

on the average, a heat flow in the x direction, and a constraint force Fc

fixing either the total energy E or the kinetic energy K:

p = dp/dt = Fa + Fc + Fd' 1<i<N;

"3 =ry - ry s
Fy =3 Fy (2)
b
Fy = MAE + vaprd | vap‘:y. var? )
Fc = - cEp or - cKp .
AE = AE1 indicates the actual instantaneous energy for particle i

minus the average energy per particle, E/N, at the same time:
aE, = [ p/(2m) + 1 3 9.1 - [E/N] (3)
| i 2 ij *

The sum runs over all particles j interacting with 1. Similarly, the

individual-particle fluctuations in potential pressure-tensor components,

$ _ p® _ p?®
Apxa.i - an,i an : (4)
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follow from the definition of the instantaneous pressure tensor:

_ K *
PV = Pog *+ Pog

v=_% papB/m +33 rcFB : (5)
Note that only the potential part Pi of the pressure tensor contributes

to the driving force Fd. This force 1s constructed so as to induce a mean
heat flux in the x-direction with the resulting dissipation matching that

from irreversible thermodynamics [9]. The instantaneous heat flux Q is

given by
mQv = % p'iE'I +312 r'lj L %(p'l + Pj) . F'U] . . (6)

Because the total momentum vanishes Q is identically zero in a two-body system.
In the constraint force Fc' the friction coefficient Cg or &y is a
function of time, but has the same value for all particles. ¢ is chosen so
that either the total energy E or the kinetic part K is a constant of motion.
The two choices will be called "isoenergetic® and "isokinetic", respectively.
Explicit construction of ¢ yields [11]

L = M, V/(2K) ,

(1)
& = g + [I pyeFy/(2km)]

for the isoenergetic and isokinetic cases, respectively. One can see that
for absent driving force (a=0), CE 1s also vanishing. This

corresponds to the usual Newtonian equilibrium molecular dynamics. In

CK' however, there 1s an extra term independent of A. Thus, even for

A=0, the isokinetic molecular dynamics is non-Newtonian [13].
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Measuring the heat flux Q makes i1t possible to obtain the thermal

conductivity « from the relation [11]

Ex = nT . (8)

The bar means time average. T is the absolute temperature defined by the

relation

K = = DNKT , (9)

N |~

where k is Boltzmann's constant.

Equation (8) may be used for any A to define formally a nonequilibrium
¢k = «(x). To compare with 1lnear Green-Kubo results [3], however, small
\'s have to be used. Equation (B) may be compared with Fourier's Law:
Q= - «VT (10)
which 1ikewise defines a constant « (1inear regime) only for small temperature

gradients.

Both Qx and « depend on N. One might conjecture that « is a monotonically
increasing function of N up to the thermodynamic 1imit. The form of this

number dependence was discussed, qualitatively, in Reference [3].

The meaning of temperature for small systems was discussed in Reference [15].
We use temperature in the sense of T of that reference, generalized to
nonequilibrium systems. Furthermore, the thermodynamic pressure in D dimension

given by the usual relation

P=3P /0. (11)



IIl. CALCULATION METHOD

A. Streaming Motion (& = 0)

We consider an interaction potential which vanishes for r>o, so that we
have soft repulsive spherical particles of diameter o. If no pair of
particles overlaps, then ¢=0, and the isoenergetic and isokinetic cases

coincide. The corresponding "streaming motion® 1s characterized by

dp_,/dt = A5_ (8K) - ¢p_, ,

(12)
L=2\1} px1AK1/(2Km) .
K and AK appear, rather than the AE of (2) because the potential
vanishes between collisions. The ND equations of motion are coupled by
. Equations (5) and (6) are simplified:
PagV = I P qPay/m . (13)
mV = ¥ pyK; = I pyaK, , (14)

for the streaming motion. Combination of (9), (11) and (13) shows that

PV/(NkT)=1 as in the equilibrium case.

Setting o=0 yields the 1deal gas case. Then only streaming motion occurs,
which is in general no longer characterized by straight 1ines if a\«0.
Without loss of generality, we assume A>0 in the following. What is the

maximum Qx which can be achieved for given N,D and kT when the center of
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mass is fixed? A Lagrange-multiplier calculation yields the result that one
particle (say particle 1) moves in the positive x-direction. The rest move
in the opposite direction:

Py =-Py/(N-1) , 21 <N

_ (15)
K = 3 ONKT = p2/[m(1-N"1)1 .
The corresponding heat flux is
1/2
gl = 1 (1-287T) [m(onkT)3 /(1N (16)

Thus the collisionless ideal-gas behavior may be characterized as follows:
For small A, Qx increases proportional to A, as given by (8). If A
becomes very large, or, if the streaming motion persists for a long time,
Qx tends to a saturation value Qmax given in (16). Accordingly, «

becomes proportional to 1/an for large . Between collisjons, the
streaming motion is the same as that of an ideal gas and can be treated
numerically without problems. The streaming motion ends when any pair of
particles happens to touch. Without loss of generality, we assume a

collision of particles 1 and 2 in the following.

B. Collisions

In our preliminary calculations in reference [13], the colliding motion was
treated numerically assuming potentials proportional to o-r for o>r and
vanishing for o<r. The equations of motion were solved for a series of

increasing proportionality constants until the "hard-sphere limit* was
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achieved. Because ¢ was continuous the motion, pressure, and heat flux
vector could all be calculated without trouble. The pressure and heat flux
contributions from the collisions are not the same for isoenergetic and
isokinetic cases. This comes from the different momentum histories during
the collision. Of course at the end of collision (defined by M2 = o)
the motions coincide in the two cases. This is because the extra net work
performed by the driving force during each collision is exactly offset by
the isoenergetic or isokinetic friction coefficient. Thus the coordinate
trajectories are the same in the hard-sphere 1imit. The numerical
calculation of collisions was relatively slow because the momenta of all the
particles varied with time. In the present paper, we display a theoretical
treatment of collisions which substantially reduces this numerical work.
Only two-particle collisions 1-2 have to be considered. During each
collision, the product of force and distance greatly exceeds kT, and the
distance vector M2 is essentially constant, equal to o. In this limit

Eq. (2) becomes

p; = dpildt = NiFlze]2 - cp1 », 1 <1 <N . (17)

where 2P is a unit vector parallel to 120 and with F12 the magnitude

of the force exerted on particle 1 by particle 2.

- 1 o=l
N1 =1 + 2 \x12(1 2N ) ,
(18)
- 1 _on—]
N2 =-1+ 2 xxlz(l 2N ),
N, = - xx12/N », 3<i1<N.
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The terms linear in A\ come from the driving force. The general solution

of (17) 1is

p;(t) = [I(t)]™ [ps(0) + e N, olt Fip(t)I(t)dE ],
(19)

1(t) = exp f° g(tydt’
with o indicating the time at the beginning of collision. This solution,

however, can only be used if ¢ is known as a function of t. The friction

coefficients which couple the ND differential equations are given by (7) as

follaws:
Cg = Frp 3000 ,(P4p,) 1/ (2Km) (20)

It is convenient to use the notation Pys = PP, and Sy2 = Py*P, for the
relative and total momenta of the colliding pair. Then (18) yields

Pig= 2Fyp € Py (22)

e -1 _

S42 = 1x12(1-2N ) F.lz Z S12 - (23)
Projection onto e, = r12/a. indicated by a prime, gives

Pz = 2Fyp ~ WPy, (24)

o _ -1

s'iz = [XX12(]—2N )] F]z - s'iz ’ (25)
where F]2 is a steep repulsive force yet to be chosen explicitly.
The isoenergetic case is characterized by

1
. = F. [ A%, ,51,17(2Km) ,
E 1272 "M2712 (26)

(E=0) » (R = - & = F1oP1p/m) .
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The isokinetic case is given by
- 1
Ck = Fra [5 W87, + ppp)/(2Km)
(27)

(K=0) » (K=constant) .
Thus, the isoenergetic case has been reduced to three coupled differential
equations in the variables piz, siz and K. The isokinetic case has been
reduced to two coupled equations in the variable piz and siz. Because
this is simpler, the isokinetic case will be solved first. .

Having the soTution for p{z. siz, K means first knowing £. See (26)

and (27). Then the momenta ge_gur1ng the collision follow from (19).

Furthermore, the instantaneous pressure and heat flux follow from (5) and (6):

Pop’ = F129%,,12%,12 ° (28)

mV = 3 F1298,,12%12 - (29)
Generally each collision begins with p{2<0 and ends with pi2>0. The
turning point 1s given by pi2=0. The condition ending the collision,
! pizdt=0. 1s discussed below.
C. Isokinetic Hard-Sphere Collisions
The colliding motion begins at time 0 and ends at time tC with ry2=%-
We assume that the force during the penetration of the spheres is

F.,=Fe - (30)

12 12
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with arbitrarily high, but finite, F. Then, (24), (25) and (27) may be

combined to give a single differential equation for cK:

& = FLO + 3 8)/(mK)] - ¢,
(31)

For the duration of each collision & is fixed, and gives the influence of

the driving force Fs

on the collision. It is convenient to replace the
time variables ¢ and t by impulse variables xK and <:

XK = CK/F s T =Ft . (32)
During the collision, 0 < t < .- In the hard-sphere 1imit, as the
collision time t. tends to zero the absolute value of & becomes
arbitrary large, but the impulse delivered remains finite and

non-vanishing. We will see that similar considerations hold for pressure

and heat flux. Using the definitions (32), Equation (31) becomes

2

_ 2 _ _ y2
dXK/dr = (ch/dt)/F =q XK

(33)

a =100 +3 8)/(mk)]72

From the definition of q and xK it follows that
@° - X220 (34)

during the whole collision.
The solution of (33) is

Xe = a [1 - 2/(1+Qexp(2q1) ],

(35)
@ = [a+X (0)][q-X (0)] , 0 <@ < X
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X increases monotonically with time. Because we know the friction,
equations (17) can be solved separately. The result is
py(x) = [I(1)17" [py(0) + e Ny 17 I(x')de'],
I(x) = [@exp(qr) + exp(-qt)]}/(1+Q) , (36)
of | I(x')dx' = [1-@+exp(qr)-exp(-ar)[/a(1+@)] .

Now it has to be determined when the collision ends. The condition corres-
ponding to a net displacement of zero, the hard-sphere 1imit, {is

T

o € py,(*) dr = Fm{ri (x ) -a] = O, (37)
From (36), this can be written as

~ -1
tn I(x.) = - da tan db(tc) '

_ 1 1/2
da =[1-Q+ 2 (14Q) ¢q p{zlln . (38)

91/2

dy(z.) = (exp(qx,) - 1]1/[1+eexp(qx.)] .

As usual, pi2=p{2(t=0). The trivial solution of (38) with =0 and r{2=a
corresponds to the beginning of the collision. There is a second unique
solution with 0 < T < o and ri12=¢ determining the end of the

collision. This solution has to be found numerically. Then, the pressure

(28) and heat flux (29) integrals yield

cgll pcBth =g ec..lzeﬂ’12 e , (39)
1
] mQvdt=;o0e I si_ (<) dr =
(9 2 a,12 12
coll coll (40)

1

' /2)1 [s), - ax (-2 pl T tan”! dy(x)

= 3 oe, 1, [(1+2)/(nq
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Combination of (27), (29) and (37) results in
i ;Kdt = | de1 = [A/(2Km)] | mQdet .

where the integrals cover the ranges 0 < t < tc and 0 < * < T.- For
db(rc), see (38). Thus, the complete solution for XK > —q has
been found. If xK is equal to -q, a 1imiting case of zero probability, both th

collision time tc and the impulse delivered e diverge.

D. Isoenergetic Hard-Sphere Collisions

The three coupled equations for the isoenergetic case are

Pip = Frp [2 = Axp,8d,pi,/(4km)] (a1)
31, = Fap WL (1-2N71) = [(s,)%/(axm)] 1, (42)
km = Fy,p4; - (43)

The corresponding values of cE. PcB and Qc are given by (26), (28) and

(29), respectively.

We introduce the new variables u,v,w

=1 ' =1 -
ussy ).x.lzs12 V=3 spiz , W= 28Km . (44)

into (41) to (43) and find

6=s F]z[I-(uzlw)]. (45)
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V=32 Fio(1-(uv/)] , (46)

w =8 F,,[4v/s] . (47)
F12 > 0 is not yet specified. In the above variables,

§g = & Fop ulw ; (48)
see (26).

Assuming that F12 is constant is not useful here, but a more complicated
assumption, which gives a constant friction coefficient Eer does make

the system tractable:

= Cw sgn(u)/(us) . (49)

Fi2

Thus F.. varies during the collision. Because & is infinitesimal while w0,

12
F]zc/kT>>0. Thus F+» yields again the hard-sphere 1imit. If u changes sign

during the collision, F12 would approach « at this point even for finite F.
We will see later that this causes no difficulty. The friction coefficient
becomes

‘E = C sgn(u) . (50)

Defining =Ct as usual, (45) to (47) become

du/dt = sgn(u) [w-u’l/u , (51)
dv/dx = sgn(u) [w-uv]/u , (52)
dw/dt = sgn(u) [4wv]/(8u) . (53)

Subtracting (51) from (52) yields
d(v-u)/dx = -sgn{u) [v-u] . (54)
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This can be solved, with the result:
v(t) - u(t) = (v-u) ex(x) ,
exp(-T) : u(0)>0 _ (55)
ex(t) = exp(t) : O
exp(2t*-x) : u>0>u(o) .
From the definitions of u and w it follows that w>u2 in the present case.
Therefore, du/d«>0 during the collision. Thus, u>u(o) for «>0. <* is
defined by u(<*)=0, i.e., when u changes sign (which need not happen). Since -
determines the time behavior of (v-u), we make the assumption
u(t) = g(<x) ex(t) . (56)
defining a function g(x). It follows that
g(o) = u(o), sgn(g) = sgn(u), du/dr = [(dg/dr)-sgn(g) g] ex(x). (57)
Inserting (55) yields
v={(g+v-u)ex(t) . (58)
On the other hand, from (51) it follows that

w = sgn(g) g (dg/dr) ex’(x). (59)

Thus we have expressed u,v and w in terms of a single unknown function g.
(du/dx)>0 means (dg/dx)>0; see (57). Thus g is strictly increasing with <.
g(t*)=0 defines <*. Generally, w is non-negative due to (59). Because w is
proportional to K>0, w cannot vanish, even for g+0. This means that at t»<*,
lgl(dg/dt) remains finite and nonzero. That (dg/dx)-»= when t-t*,

we can see from (51).
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Utilizing (53) yields the desired differential equation for g:
[g(d2g/d<?) - (dg/dx)2lssan(g) = 2(dg/dv)[g(&+2)+2(v(0)-u(0)] .  (60)

Using the transformation p = dg/dt one can solve the resulting

first-order differential equation in p (as function of g). Reinserting

p=dg/d+ yields

gdg/(ag2 +bg +c¢c) =sgn(g) d ~,

2 (61)
a=1+(2/8), b =(4/8) (v-u) , ¢ =w-au - bu .
The donominator is nonvanishing for any g if
= aac - b2 = a[1+(2/8)w] - 4[u(2/8)v]% > 0. (62)
From the definition of u, v and w it follows that a>0 generally if 8>0.
The zero-probability case a=0 occurs if and only if u=v and w=u
[1+(2/8)] corresponding to the vanishing of the kinetic energy at the
turning point. Thus A is positive and equation (61) can be solved for «
as a function of g:
2 1/(2a) 1/2
ag +bg+c aA
Combining (59) and (61) yields the simple relations
W= (agz+bg+c) exz(r) W= ag2+bg+c . (64)
The end of collision is given by Wond = Wr cf. (6.26). Thus,
ex(x,) = [W(0)/(ag? + bg_ + ©)1'/2 . (65)

Inserting this result in (63) yields an equation for 9.:



- 18 -

1/2
Y S )

172 2 - -
(1-a)a an [(agc+bgc+c)/&] = 2b tan 2agcg+b(gc+g)+2c . (66)

This equation has a unique solution for 9.>9, which has to be determined
numerically. This may be compared with the general isokinetic case, where a

formally similar but simpler equation, (38), gave Te-

We may evaluate T, using (65) and the solution of (66). It is possible,
however, to express all quantities in terms of 9e- For u,v,w see Eqs. (56),
(58) and (64), respectively, inserting (65) for ex(t). Bearing in mind that

CE=ngn(u). the momenta at the end of collision are
Pi(g.) = ex(x(g.)) [py + e ,N;(g.-9)/8] . (67)

Furthermore, the collisional integral of the friction coefficient 1s given
by

I ¢ dt = - n ex(x,) = ‘5 tn [(ag§+bgc+c)/w] ) (68)

The corresponding pressure and heat flux contributions are evaluated easily

numerically:
-1 gc
Ip vapdt = § e 12eB 128 J © ex(x(g))dg , (69)
1 L} g
] -1 8¢ 2
i mQV dt = 5 & e  1,(8Ax,,) "~ ex“(<(g9))adg , (70)
' g

which completes the solution.



- 179 -

IV. COMPUTER EXPERIMENTAL RESULTS

In Section III, the collisions were reduced to one-dimensional quadratures.
The solutions were built into the existing computer program [13] which can
treat two- , three- and four-dimensional systems. A series of test runs
showed that the reduction in computer time used varies with the number of
particles, dimensionality, and density, but is typically a factor 10. For
very low densities, where streaming motion 1s dominant, the gain is only

about a factor of two.

In this paper, results for hard spheres are presented. The following

particle numbers and densities were investigated:

(N=4.V/Vo =1.25) & (N=32,V/Vo=1.25) : typical solid,
(N=4.V/Vo = 1.80) & (N=32.V/V°=1.80) : dense fluid,
(N=4.V/V° = 3.00) : dilute fluid.

v° is the close-packed volume Na3//2. For each of the five series
of computer experiments, 11/2 was varied between 0.0 and 2.0 in steps of
0.1. Details can be found in Table I. The quantities calculated are

displayed in Table II. Apart from the heat flux data, the results for

str

t°", Z. and (ZK-I)/(ZE—1) are also presented in Tables III to VII.

2
tStr is the average time between collisions and Z 1s the compressibility
factor PV/(NkT). For A=0 (i.e., equilibrium), it is possible to compare
tstr and ZE with values given in Ref. [2], where the same particle

numbers and densities occur. The check of consistency is successful. For

equilibrium hard spheres,
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Zp =1+ «/2/(3N tSt'aN) :

e w1y 300172 3 3.
ay = 0w 32 edmanrdea | (1)
a, = 0.8904 , a,, = 0.9869 .

r(m) is the usual r-function, (m-1)! for positive integral values of m.

In Ref. [2], ay - called R there - was determined experimentally. The
theoretical explanation for this correction was given in Ref. [4]. Thus,
there 1s a further check of consistency: One has to compare ZE calculated
directly from the pressure tensor with zE calculated indirectly from
calculated via tStr. For small A, the agreement 1is perfect. For higher
A (starting at about x1,2=0.7). the deviations become pronounced,

indicating nonlinear non-equilibrium behavior.

tr and ZE separately for

1/2

1f we look on Tables III to VII and compare t°
different \'s, we see analogous behavior: up to about A" "=0.6,

tStr and ZE do not depend significantly on A. For higher A, there
are systematic positive and negative deviations which are not easy to

explain theoretically.

The ratio (ZK—l)/(ZE-1) has been included for the following reason. It

can be shown that for A=0 this quantity is

(Z -1 = 1 - -1 Y Lo N2, (72)

for N D-dimensional hard spheres, independent of density. The three-

dimensional values for N=4 and N=32 are 1.125 and 1.011, respectively.

Tables 111 to VII confirm this result for small A's.
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For D=1 and N=2, (ZK—1)/(ZE-1) becomes infinite. On the other hand,
(ZK—1)/ (ZE-I) converges to 1 in the thermodynamic 1imit. This is one
feature of a general observation: The isoenergetic and isokinetic cases
both converge to the same thermodynamic 1imit. This can easily be seen by
the following argument: the "typical" potential energy LI during the
collision (in the case of very steep soft potentials) is essentially kT,
independent of N. Thus the relative contribution of ®12 to the total
energy £ becomes smaller as N increases:

E = DNKT/2, (713)

The restrictions of constant total energy and constant kinetic energy become

identical 1f Now.

Now we turn to the heat flux. Because Qx.E becomes proportional to A

for small A, while its fluctuations do not diminish, the statistical
accuracy of this quantity becomes poor. This is why we chose to examine
more collisions for small A, as shown in Table I. For h]/z = 0.1,

however, the heat flux data were meaningless, with estimated errors as large
as the mean value itself. From heat flux, the corresponding heat
conductivities can be calculated using (8). xg and its streaming part

‘str are included in Tables III to VII. These quantities are highly
correlated. Again, no significant dependency on A can be detected up to

x]/2=0.6. Thus one can conclude that linear heat transport is

approximately valid in this region. We have used the weighted mean of the
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results for 0.2511/259.6 as estimates for the equilibrium linear heat
conductivity. Table III shows these results together with the weighted

means of tStr and ZE for 0.05;1/2

<0.6. As expected, g for
N=4 is smaller than for N=32. A comparison with Ref. [3] 1s also possible,

where g was calculated using the Green-Kubo equilibrium autocorrelation

approach:

V/Vg=1.8, N=108 : «g/k=6.94 + 0.14 ,
(74)

V/V°=3.0. N=108 : nE/k=1.92 + 0.02 .
One can see that for V/vo=1.8 the result of Ref [3] and xg (Table 111,

N=32) are consistent. Thus, the N dependence is small for N greater than 32.

Finally, consider the heat conductivity for A greater than 0.6. After a

transient region, e and KStr become approximately linearly

1/2

decreasing functions of A This behavior may be compared with Ref

[13], where a system of three hard disks was investigated. There, it turned

str

out that «. and « varied 1inearly with tnx. In that case no

£
transient region or "linear regime®™ could be detected. Obviously, the A's

where these transitions occur are too small to observe in two dimensions, at
least with the accuracy obtained in Ref. [13]. The three-dimensional case
is more favorable. It is indeed possible to get heat conductivities for

hard spheres using our method in a reasonable amount of computer time.
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v. CONCLUSION

The pressures found, in both the fluid and solid phases, agree nicely with
those of Alder and Wainwright for field strengths below 0.4/0. In this

region there is negligible coupling, less than 1%, between the heat flux and

the pressure tensor.

For the conductivity we find, as predicted by Alder, Wainwright, and Gass,
considerable number dependence, roughly a factor of 3 or 4, between the
4-sphere results and the 32-sphere results. The fluid data suggest a

conductivity lying somewhat below the Green-Kubo value found for 108 and 500

particles in a dense fluid.

This considerable number dependence suggests that simple few-particle models
based on the dense-fluid cell-model picture will not be particularly useful
for thermal conductivity. This is a 1ittle surprising in view of the great
success of an Einstein-like model for conductivity in generating a good
corresponding-states account of conductivities for a wide range of force

laws over the entire span of dense fluld conditions [16].

The uncertainty in the old Green-Kubo results was 2% after 20,000 collisions
per particle. Our uncertainty, 5% for field strengths greater than

0.05/0, based on about 1500 collisions per particle, is only a relatively
small improvement over the estimate based on statistical fluctuations
proportional to the square-root of the number of collisions studied. The

relatively complicated dependence of the results on field strength suggests
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that the external field method is advantageous only if it is desired to know
the nonlinear conductivity. The linear conductivity can as easily be found
using the Green-Kubo technique, which has the added advantage of providing
the other transport coefficients and their frequency dependence

simultaneously.

The nonlinear conductivity is interesting. Both the 4-sphere and 32-sphere

1/2

results are approximately linear in A\ for larger fields. This

dependence can be thought of as arising from a diffusion process or,
alternatively, from a scattering process. 1In the former case the diffusion

3/2

equation suggests a fall-off in correlation as time in three

dimensions, leading to a frequency dependence or field dependence of order
aﬂlz or 11/2. Alternatively, from the standpoint of scattering of

phonons, the Debye-Waller scattering, proportional to the average value of

2

0—2. and combined with a density of states proportional to -, leads

also to a square-root dependence.

The nonlinear conductivities found here, increasing with field in the solid
and dense fluid phases, could be extended and made more precise were there
data available from other simulations for comparison. There appear to be no
difficulties in extending the non-equilibrium techniques to hard spheres.
The hard-sphere model is particularly suited to shock wave simulation, the

area in which nonlinear effects are most easily generated and studied.
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TABLL: 1. Number of computer runs and of collisions as a function of A..
Each run started from a FCC lattice with differcnt random initial velocities.

The first 500 collisions were used for equilibration, the consecutive 2500

for calculation.

7\1 /2 No(runs) No,(collisions)
0.0 to 0.2 24 60 000
0.3 20 50 000
0.4 16 40 000
0.5 12 30 000
0.6 to 2.0 8 20 000

TABLE II. Quantities calculated in the computer runs , m =6 = kT = 1.

T Average time of streaming motion (between collisions),

inverse of the collision rate

«calculated from pressure t
Compressibility factor PEV/ (NKT) for the isoenergetic case,

E
ax E Average heat flux in the x-direction (isoenergetic case)
?
XE/k Total heat conductivity over k (isoenergetic case)
xStr/k Contribution of streaming motion to the heat conductivity
Z,-1
(f&—_T) Ratio (isokinetic¢/isoenergetic) for the collisional part of Z
coll
)CK ‘
( coll) Ratio (isokinetic/isoenergetic) for the collisional part of X
pd
E

The numbers in parentheses denote the 'uncertainty. of the last digit(s) of

the results displayed in Tables III to VIII.




TABLE III,

The calculated quantities are explained in Table II.

Results of nonequilibrium molecular dynamics for hard spheres. N=4, V/Vo=1.25.

T T T T T T T T T LT T o1l
70/2 102t5tr ZE 6x,E xE/k KStr/k (22-1) (xioll)
E
0.0 1.242(3) 14.36(0)  =====  mem=ee eeeee 1.126 ==---
0.1 1.242(2) 14.36(0)  ===== = ee=ee eeeee 1,124 ==ee--
0.2 1.243(3) 14.36(0) 0.17(6) 4.29(144) 0.24(15) 1.126 1.379
0.3 1.243(3) 14.36(0) 0.60(7) 6.65(79) 0.56(8) 1.125 1.461
0.4 1.244(2)  '14.37(0) 0.77(9) 4.80(58) 0.38(5) 1,125 1.484
0.5 1.242(4),  14.37(0) 1.25(7) 5.01(28) 0.38(2) 1.126 1.408
0.6 1.242(4) 14.37(1) 1.89(8) 5.25(23) 0.38(2) 1.124 1.396
0.7 1.23613) 14.39(1) 2.81(11) 5.73(23) 0.43(1) 1.121 1.398
0.8 1.233(4) 14.40(1) 3.28(16) 5.13(25) 0.38(2) 1.122 1.406
0.9 1.234(6) 14.40(2) 4.14(14) 5.12(17) 0.37(1) 1.120 1.392
1.0 1.228(3) 14.41(2) 5.10(14) 5.10(14) 0.37(1) 1.117 1,375
1.1 1.229(4) . 14.45(1) 5.71(10) 4.72(12) 0.33(1) 1.117 1.363
1.2 1.221(5) 14.43(2) 6.67(21) 4.63(14) 0.32(1) 1.115 1.356
1.3 1.217(2) 14.39(2) 7.38(7) 4.37(4) 0.29(1) 1.112 1.344
1.4 1.231(5) 14.32(2) 8.32(13) 4.25(7) 0.23(1) 1.112 1.334
1.5 1.226(5) 14.29(4) 8.73(13) 3.88(6) 0.24(1) 1.110 1.321
1.6 1.245(5) 14.18(2) 9.53(7) 3.72(3) 0.22(0) 1.110 1.319
1.7 1.243(7) 14.13(3) 10.16(14) 3.52(5) 0.20(0) 1.107 1.307
1.8 1.263(6) 13.88(3)  10.53(8) 3.25(2) 0.18(0) 1.105 1.295
1.9 1.265(4) 13.81(4)  10.87(9) 3.01(2) 0.15(0) 1.103 1.280
2.0 1.287.(3) 13.66(4) 11.30(6) 2.83(1) 0. 14 (0) 1.103 1.274



2 aste .= s, L o
A 107t Z5 9% & Xp/k W oE /k (EE—T) (;boll)
E
0.0 0.137(0) 14.67(1)  =====  —mmee eeee- 1,011 ——=—-
0.1 0.137(0) 14.68(1)  =====  mmeee mmmee 1.011  ————-
0.2 0.137(0) 14.67(1) 0.9(1) 21,5(32) 1.34(25) 1.011 1.033
0.3 0.137(0) 14,68(1) 1.6(1) 17.6(15) 1.11(12) 1.011 1.034
0.4 0.138(1) 14.65(1) 2.7(1) 17.0(7) 1.10(5) 1.011 1.035
0.5 0.137(0) 14.66(1) 4.0(2) "15,9(7) 1.04(5) 1,011 1.037
0.6 0.138(1) 14.63(1) 6.1(2) 16.8(6) 1.10(4) 1.011 1.039
0.7 0.139(1) 14.56(2) 8.4(3) 17.2(5) 1.15(5) 1.012 1.041
0.8 0.139(1) 14.56(3)  10.5(3) 16.5(5) 1.11(4) 1,012 1.040
0.9 0.14171) 14.51(3)  14.3(5) 17.6(7) 1.14(15): 1.013 1.048
1.0 0.142(1) . 14.44(5) 18.2(5) 18.2(5) 1.32(5) 1.014 1.054
1.1 0.144(1) 14.47(5)  23.3(5) 19.2(4) 1.43(4) 1.015 1.059
1.2 0.149(1% . 14.31(5) 28.2(6) 19.6(4) 1.51(4) 1.017 1.066
1.3 0.155(1) 14.13(7)  33.3(7) 19.7(4) 1.57¢5) 1.019 1.077
1.4 0.165(1) 13.74(7)  38.7(11) 19.7(6) 1.63(7) 1.022 1.086
1.5 0.174(1) 13.53(4)  43.1(7) 19.2(3) 1.61(3) 1.024 1.091
1.6 0.182(2) 13.25(10) 46.0(10) 18.0(4) 1.54(3) 1.025 1,091
1.7 0.204(1) 12.79(8)  53.3(9) ° 18.4(3) 1.59(2) 1.030 1.103
1.8 0.212(3) 12.41(10) 54.0(9) 16.7(3) 1.47(3) 1.030 1.101
1.9 0.230(3) 12.13(7)  58.7(7) 16.3(2) 1.46(1) 1.032 1.105
2.0 0.256(3) 11.72(6)  62.3(6) 15.6.(2) .  1.42(1) . 1.035 1.109




Table V. As TableIII, except for N=4, V/V°=1.80.

I '=================================‘f:§3ff=====
N2 go2str 5 str gt (— )
E x)E ¥ /k T /k (ZE_1 xgETT
0.0 3.12(1) 6.30(1)  =m=m=  mmmmm mmeee .12 =
0.1 3.12(1) 6.32(1) = =—===  =mmme eeeee 1124 —----
0.2 3.13(1) 6.31(1) 0.06(2) 1.53(48) 0.32(8) 1.125 1.480
0.3 3.12(1) 6.31(1) . 0.19(2) 2.15(25) 0.34(4) 1.124 1.398
0.4 3.13(1) .. 6.32(1) 0.36(3) 2.26(19) 0.37(3) 1.126 1.432
0.5 3.13(2) 6.31(1) 0.62(3) 2.48(11) 0.41(2) 1.123 1.409
0.6 3.13(2), 6.31(1) 0.80(4) 2.22(10) 0.34(2) 1.126 1.388
0.7 3.11(1) 6.33(1) 1.10(5) 2.24(9) 0.36(1) 1.124 1.391
0.8 3.10(1)" 6.34(2) 1.32(4) 2.06(6) 0.32(1) 1.122 1.379
0.9 3.12(1) 6.34(1) 1.65(5) 2,03(6) 0.32(1) 1.123 1.384
1.0 3.11(1) 6.36(2) 1.92(3) 1.92(3) 0.30(1) 1.121 1.375
1.1 S 3.12(2) 6.36(3) 2.33(4) 1.93(3) 0.30(1) 1.122 1.379
1.2 3.13(2) 6.34(2) 2.63(2) 1.83(1) 0.28(0) 1.121 1.369
1.3 3.14(2) 6.35(1) 2.98(4) 1.76(2) 0.27(0) 1.122 1.370
1.4 3.19(1) 6.29(2) 3.22(3) 1.64(2) 0.25(0) 1.121 1,358
1.5 3.16(2) 6.35(3) 3.57(5) 1.59(2) 0.23(0) 1.123 1.360
1.6 3.21(2) 6.28(5) 3.76(5) 1.47(2) 0.21(0) 1.124 1.355
1.7 3.27(2) 6.20(4) 3.98(5) 1.38(2) 0.20(0) 1.125 1.354
1.8 3.32(2) 6.18(4) 4.25(4) 1.31(1) 0.19(0) 1.129 1.356
1.9 3.36(2) 6.18(4) 4.38(3) 1.21(1) 0.17(0) 1.132 1.358



7. -1 ;EBII""
A% 10%EstE Zg 3, 5 o /k XSET (EE:T) ‘;EBTT)
E
0.0 0.285(1) 7.58(2) = =====  meme= e I I E—
0.1 0.284 (1) 7.57(3) = =====  mmeee - 1.011 —=——--
0.2 0.282(1) 7.62(3) 0.3(1) 7.3(13) 0.83(21) 1.011 1.039
0.3 0.282(1) 7.62(3) 0.6(0) 6.2(3) 0.84(6) 1,011 1.038
0.4 0.285(1) 7.58(3) - 1.1(1) 7.0(4) 0.89(7) 1.011 1.038
0.5 0.283(2) 7.62(5) 1.7(1) '6.8(3) 0.78(8) 1,011 1.037
0.6 0.285(2), 7.64(3) 2.6(1) 7.3(3) 0.87(5) 1.012 1,043
0.7 0.288(3) 7.59(6) 3.6(2) 7.4(4) 0.89(3) 1.012 1.042
0.8 0.294(2)  7.50(5) 5.3(2) 8.3(4) 1.10(6) 1.013 1.055
0.9 0.308(2) 7.29(6) 6.7(3) 8.3(4) 1.22(7) 1.014 1.062
1.0 . 0.332(3) 7.13(5) 9.8(3) 9.8(3) 1.48(5) 1.019 1.078
1.1 0.354(2) 7.05(7) 12.9(4) 10.7(3) 1.64(4) 1.022 1.087
1.2 0.382(6) . 6.86(7) 15.1(5) 10.5(3) 1.73(10) 1,027 1,104
1.3 0.428(4) 6.68(5) 18.5(6) 10.9(4) 1.83(5) 1.032 1.118
1.4 0.458(6) 6.54(7) 20.2(3) 10.3(2) 1.77(5) 1,035 1,121
1.5 0.520(8) 6.37(8) 23.6(5) 10.5(2) 1.81(3) 1.041 1.136
1.6 0.565(7) 6.21(8) 24,5(5) 9.6(2) 1.73(4) 1,044 1.135
1.7 0.611(7) 5,99 (6) 25.6(4) 8:9(1) 1.62(1) 1,045 1.134
1.8 0.677(7) 5.80(8) 26.9(5) 8.3(2) 1.56(2) 1.049 1,141
1.9 0.710(11)  5.70(6) 27.4(5) 7.6(1) 1.44(2) 1.049 1.137
2.0 0.734(12)  5.73(9) 29.2(3) 7.3(1) 1.37(2) 1.050 1.136




TABLE VII.

As Table III, except for N= 4 V/V =3. OO.

Z.,-1 coll
70/2 102E8tr 2 Qx,E ME/k str/k (Z§-1) i§011)
E

0.0 5.88(3) 3.82(1) | mwe== 1 emmem— m—eee 1,125  ==——-
0.1 5.91(3) 3.80(2) W ===== mm=m—- —=ee- 1.124  ====-
0.2 5.86(3) 3.83(1) 0.05(1) 1.33(28) 0.29(7) 1.125 1.378
0.3 5.87(3) 3.82(2) 0.11(1)° 1.26(14) 0.27(4) 1.126 1.355
0.4 5.92(3) 3.81(2) 0.19(1) 1.21(6) 0.29(3) 1.125 1.398
0.5 5.88(3) 3.83(2) 0.30(1) 1,20(5) 0.30(2) 1.124 1.366
"~ 0.6 5.85(6) - 3.82(3) 0.42(1) 1.15(4) 0.28(1Y) 1.123 1.362
0.7 5. 91(6) 3.82(3) 0.56(2) 1.13(4) 0.28(1) 1.125 1.374
0.8 6. 10(43 3.73(2) 0.70(3) 1.10(4) 0.29(1) 1.122 1,342
0.9 6.08(5) 3.76(2) 0.81(2) 1.00(2) 0.26(1) 1.125 1.359
1.0 6.09(3) 3.74(1) 0.91(2) 0.91(2) 0.23(0) 1.124 1.340
1.1 6.19(6) 3.71(2) 1,06(2) 0.87(1) 0.22(1) 1.122 1.327
1.2 6.24(3) - 3.69(2) 1.16(1) 0.80(1) 0.22(1) 1.123 1.330
1.3 6.33(4) 3.65(2) 1.28(1) 0.76 (1) 0.21(0) 1.124 1.334
1.4 6.61(4) 3.53(2) 1.33(2) 0.68(1) 0.20(0) 1.122 1.334
1.5 6.69(3) 3.52(2) 1.40(1) 0.62(1) 0.19(0) 1.123 1.330
1.6 6.94(3) 3.42(2) 1.47(2) 0.58(1). 0.18(0) 1.121 1,325
1.7 6.78(22) 3.38(2) 1.55(2) 0.54 (1) 0.17(0) 1.120 1.311
1.8 7.27(6) 3.32(2) 1.61(2) 0.50(1) 0.16(0) 1.113 1.308



TABLE VIII. The results of Tables III to VII, extrapolated

to equilibrium.

2-str str
N V/Vo 10°t ZE XE/k Y /k
4 1.25 1.243(0) 14.362(2) 5.18(18) 0.39(2)
32 1.25 0.137(0) 14.666(5) 16.74(36) 1.09(2)
4 1.80 3.124(2) 6.312(2) 2.30(8) 0.37(2)
32 1.80 0.284(1) 7.603(10) 6.79(21) 0.85(2)

4 3.00 5.885(9) 3.820(5) 1.18(2) 0.28(0)

kL]



